English

Œ¤‹†‹ÆÑ (Publication)

˜_•¶ (Papers)

  • Step-bunching instability of growing interfaces between ice and supercooled water
    K. Murata, M. Sato, M. Uwaha, F. Saito, K. Nagashima, G. Sazaki
    Proceedings of the National Academy of Sciences 119(10), e2115955119 (2022)


  • Cuticular Lipid Topology on Insect Body Surfaces Studied by Synchrotron Radiation FTIR ATR Microspectroscopy
    F. Kaneko, K. Chihiro, K. Nagashima, G. Sazaki, Y. Ikemoto
    The Journal of Physical Chemistry B 125(34), 9757-9767 (2021)
  • HCl Droplets Induced Bunched Steps on Ice Crystal Surfaces under Atmospheric-Concentration HCl Gas
    K. Nagashima, K. Murata, G. Sazaki
    Crystal Growth & Design 21(4), 2508-2515 (2021)
  • First In Situ X-ray Scattering Measurements of Insect Body Surface Lipids: American Cockroach
    F. Kaneko, K. Chihiro, K. Nagashima, G. Sazaki
    The Journal of Physical Chemistry Letters 12(7), 1969-1972 (2021)


  • Quasi-liquid layers in grooves of grain boundaries and on grain surfaces of polycrystalline ice thin films
    J. Chen, T. Maki, K. Nagashima, K. Murata, G. Sazaki
    Crystal growth & design 20(11), 7188-7196 (2020)
  • Correction to Quasi-Liquid Layers Can Exist on Polycrystalline Ice Thin Films at a Temperature Significantly Lower than on Ice Single Crystals
    J. Chen, T. Maki, K. Nagashima, K. Murata, G. Sazaki
    Crystal Growth & Design 20(7), 4852-4854 (2020)
  • Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas
    K. Nagashima, J. Maurais, K. Murata, Y. Furukawa, P. Ayotte, G. Sazaki
    Crystals 10(2), 72 (2020)


  • Investigating ice surfaces formed near the freezing point in the vapor phase via atomic force microscopy
    Y. Miyato, K. Otani, M. Maeda, K. Nagashima, M. Abe
    Japanese Journal of Applied Physics 58(SI), SIIA09 (2019)
  • How Do Ice Crystals Grow inside Quasiliquid Layers?
    K. Murata, K. Nagashima, G. Sazaki
    Physical Review Letters 122(2), 26102 (2019)


  • ATR FTIR Spectroscopic Study on insect body surface lipids rich in methylene-interrupted diene
    F. Kaneko, K. Chihiro, G. Sazaki, K. Nagashima
    The Journal of Physical Chemistry B 122(51), 12322-12330 (2018)
  • Quasi-liquid layers can exist on polycrystalline ice thin films at a temperature significantly lower than on ice single crystals
    J. Chen, K. Nagashima, K. Murata, G. Sazaki
    Crystal Growth & Design 19(1), 116-124 (2018)
  • In situ observations of spiral growth on ice crystal surfaces
    K. Murata, K. Nagashima, G. Sazaki
    Physical Review Materials 2(9), 93402 (2018)
  • Growth suppression of ice crystal basal face in the presence of a moderate ice-binding protein does not confer hyperactivity
    M. Bayer-Giraldi, G. Sazaki, K. Nagashima, S. Kipfstuhl, D.A. Vorontsov, Y. Furukawa
    Proceedings of the National Academy of Sciences 115(29), 7479-7484 (2018)
  • Uptake mechanism of atmospheric hydrogen chloride gas in ice crystals via hydrochloric acid droplets
    K. Nagashima, G. Sazaki, T. Hama, K. Murata, Y. Furukawa
    Crystal Growth & Design 18(7), 4117-4122 (2018)
  • Growth of ice crystals in the presence of type III antifreeze protein
    D.A. Vorontsov, G. Sazaki, E.K. Titaeva, E.L. Kim, M. Bayer-Giraldi, Y. Furukawa
    Crystal Growth & Design, 18(4), 2563-2571 (2018)
  • Temperature dependence of the growth kinetics of elementary spiral steps on ice basal faces grown from water vapor
    M. Inomata, K. Murata, H. Asakawa, K. Nagashima, S. Nakatsubo, Y. Furukawa, G. Sazaki
    Crystal Growth & Design 18(2), 786-793 (2018)


  • Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures
    S. Tachibana, A. Kouchi, T. Hama, Y. Oba, L. Piani, I. Sugawara, Y. Endo, H. Hidaka, Y. Kimura, K. Murata, H. Yurimoto, N. Watanabe
    Science Advances 3, eaao2538 (2017).
  • Hybrid plasmonic-photonic crystal formed on gel-immobilized colloidal crystal via solvent substitution
    S. Kawakami, A. Mori, K. Nagashima, M. Haraguchi, T. Okamoto
    Journal of Crystal Growth, 468, 740-743 (2017).
  • Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water
    Y. Furukawa, K. Nagashima, S. Nakatsubo, I. Yoshizaki, H. Tamaru, T. Shimaoka, T. Sone, E. Yokoyama, S. Zepeda, T. Terasawa, H. Asakawa, K. Murata, G. Sazaki
    Scientific Reports, 7, 43157 (2017).
  • Self-organized formation of parallel-banded structures through synchronization of twisted growth
    S. Mizue, S. Ibaraki, R. Ise, G. Sazaki, Y. Oaki, H. Imai
    Crystal Growth & Design, 17 (7), 3694-3699 (2017).
  • Impact of surface roughness on liquid-liquid transition
    K. Murata, H. Tanaka
    Science Advances, 3(2), e1602209 (2017).


  • Thermodynamic origin of surface melting on ice crystals
    K. Murata, H. Asakawa, K. Nagashima, Y. Furukawa, G. Sazaki
    Proc. Nat. Acad. Sci. USA, 113(44), E6741-E6748 (2016).
  • Direct visualization of quasi-liquid layers on ice crystal surfaces induced by hydrogen chloride gas
    K. Nagashima, G. Sazaki, T. Hama, H. Asakawa, K. Murata, Y. Furukawa
    Crystal Growth & Design, 16(4), 2225-2230 (2016).
  • Two types of quasi-liquid layers on ice crystals are formed kineticcally
    H. Asakawa, G. Sazaki, K. Nagashima, S. Nakatsubo, Y. Furukawa
    Proc. Nat. Acad. Sci. USA, 113(7), 1749-1753 (2016).


  • Nanostructure for Hybrid Plasmonic-Photonic Crystal Formed on Gel-Immobilized Colloidal Crystal Observed by AFM after Drying
    S Kawakami, A Mori, K Nagashima, S. Hashimoto, M. Haraguchi
    Bulletin of the Chemical Society of Japan, 89 (3), 385-393 (2015)
  • In situ determination of surface tension-to-shear viscosity ratio for quasiliquid layers on ice crystal surfaces
    K. Murata, H. Asakawa,K. Nagashima, Y. Furukawa, G. Sazaki
    Phys. Rev. Lett. 115, 256103 (2015).
  • Direct observation of bunching of elementary steps on protein crystals under forced flow conditions
    G. Sazaki, G. Dai
    Theoretical & Applied Mechanics Letters, 5 (4) 173-176 (2015).
  • Prism and other high-index faces of ice crystals exhibit two types of quasi-liquid layers
    H. Asakawa, G. Sazaki, K. Nagashima, S. Nakatsubo, Y. Furukawa
    Crystal Growth & Design, 15 (7), 3339-3344 (2015).
  • Oscillatory growth for twisting crystals
    S. Ibaraki, R. Ise, K. Ishimori, Y. Oaki, G. Sazaki, E. Yokoyama, K. Tsukamoto, H. Imai
    Chem. Comm., 51 (40), 8516-8519 (2015).
  • Microscopic identification of the order parameter governing liquid-liquid transition in a molecular liquid
    K. Murata and H. Tanaka
    Proc. Nat. Acad. Sci. USA, 112(19), 5956-5961 (2015).


  • High contrast visualization of cell-hydrogel contact by advanced interferometric optical microscopy: T. Matsuzaki, G. Sazaki, M. Suganuma, T. Watanabe, T. Yamazaki, M. Tanaka, S. Nakabayashi, H. Yoshikawa, , J. Phys. Chem. Lett., 5, 253-257 (2014).
  • Attachment and Detachment Processes of Individual Lysozyme Molecules on a Surface of a Monoclinic Lysozyme Crystal Studied by Fluorescent Single-Molecule Visualization: G. Dai, G. Sazaki, Y. Furukawa, Cryst. Growth Des., 14, 5303-5309, (2014).
  • Antifreeze Effect of Carboxylated ƒÃ‑Poly‑L‑lysine on the Growth Kinetics of Ice Crystals: D. A. Vorontsov, G. Sazaki, S.-H Hyon , K. Matsumura, Y. Furukawa, J. Phys. Chem., B118, 10240-10249, (2014).
  • Double Spiral Steps on Ih Ice Crystal Surfaces Grown from Water
    Vapor Just below the Melting Point: G. Sazaki, H. Asakawa, K. Nagashima, S. Nakatsubo, Y. Furukawa, Cryst. Growth Des., 14, 2133-2137, (2014).
  • Roles of Surface/Volume Diffusion in the Growth Kinetics of Elementary Spiral Steps on Ice Basal Faces Grown from Water Vapor: H. Asakawa, G. Sazaki, E. Yokoyama, K. Nagashima, Y. Furukawa, Cryst. Growth Des., 14: 3210-3220 (2014).


  • Colloidal crystallization utilizing interfaces of unidirectionally growing crystals: Y. Suzuki, G. Sazaki, K. Hashimoto, T. Fujiwara, Y. Furukawa, J. Crystal Growth, 383, 67-71 (2013).
  • A novel approach for protein crystallization by a synthetic hydrogel with thermoreversible gelation polymer: S. Sugiyama, N. Shimizu, G. Sazaki, M. Hirose, Y. Takahashi, M. Maruyama, H. Matsumura, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, Crystal Growth & Design, 13, 1899-1904 (2013)
  • How do Quasi-Liquid Layers Emerge from Ice Crystal Surfaces?: G. Sazaki, H. Asakawa, K. Nagashima, S. Nakatsubo, Y. Furukawa, Cryst. Growth. Des., 13(4): 1761-1766 (2013).


  • Spacially precise, soft microseeding of single protein crystals by femtosecond laser ablation: H. Y. Yoshikawa, Y. Hosokawa, R. Murai, G. Sazaki, T. Kitatani, H. Adachi, T. Inoue, H. Matsumura, K. Takano, S. Murakami, S. Nakabayashi, Y. Mori, H. Masuhara, Crystal Growth & Design, 12, 4334-4339 (2012).
  • Effects of a forced solution flow on the step advancement on {110} faces of tetragonal lysozyme crystals: direct visualization of individual steps under a forced solution flow: M. Maruyama, H. Kawahara, G. Sazaki, S. Maki, Y. Takahashi, H.Y. Yoshikawa, S. Sugiyama, H. Adachi, K. Takano, H. Matsumura, T. Inoue, S. Murakami, Y. Mori, Crystal Growth & Design, 12, 2856-2863 (2012).
  • Spiral-mediated growth can lead to crystals of higher purity: M. Sleutel, G. Sazaki, A.E.S. Van Driessche, Crystal Growth & Design, 12, 2367-2374 (2012).
  • Growth of protein crystals in hydrogels prevents osmotic shock: S. Sugiyama, M. Maruyama, G. Sazaki, M. Hirose, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, H. Matsumura, J. Am. Chem. Soc., 134, 5786-5789 (2012). (Selected as JACS Spotlights)
  • Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition: H. Nada and Y. Furukawa, Polymer Journal, 44: 690-698 (2012).
  • Precise measurements of dendrite growth of ice crystals in microgravity: I. Yoshizaki, T. Ishikawa, S. Adachi, E. Yokoyama, Y. Furukawa, Microgravity Sci. and Tech., 10.1007/‚“12217-012-9306-9i2012j.
  • Quasi-liquid layers on ice crystal surfaces are made up of two different phases: G. Sazaki, S. Zepeda, S. Nakatsubo, M. Yokomine, Y. Furukawa,  Proc. Nat. Acad.  Sci. USA, 109, 1052-1055 (2012). (Selected as In This I ssue PNAS)


  • A new constraint for chondrule formation: condition for the rim formation
    of barred-olivine textures: H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, A. Srivastava, Earth Planets and Space 63, 1087-1096 (2011).
  • Anomalous diffusion in supported lipid bilayers induced by oxide surface nanostructures: R. Tero, G. Sazaki, T. Ujihara, T. Urisu, Langmuir, 27, 9662-9665 (2011).
  • Magnetite 3D colloidal crystals formed in the early solar system 4.6 billion
    years ago: J. Nozawa, K. Tsukamoto, W. van Enckevort, T. Nakamura, Y.
    Kimura, H. Miura, H. Satoh, K. Nagashima, and M. Konoto, J. Am. Chem. Soc. 133 8782-8785 (2011).
  • Stable Growth Mechanisms of Ice Disk Crystals in Heavy Water: S. Adachi, I. Yoshizaki, T. Ishikawa, E. Yokoyama, Y. Furukawa, T. Shimaoka, Physical Review E, PHYSICAL REVIEW E 84, 051605 (2011)
  • Growth inhibition at the ice prismatic plane induced by a spruce budworm antifreeze protein: a molecular dynamics simulation study: H. Nada and Y. Furukawa, Phys. Chem. Chem. Phys., 13, 19936-19942 (2011).
  • Measurements of growth rates of an ice crystal from supercooled heavy water under microgravity conditions - Basal face growth rate and tip velocity of a dendrite: E. Yokoyama, I. Yoshizaki, T. Shimaoka, T. Sone, T. Kiyota, Y. Furukawa, Journal of Physical Chemistry, B115, 8739-8745 (2011). (Highlighted in Nature Chemistry, 3, P572, August 2011)
  • Gradual immobilization processes of molecules during transitions from solute to solid states:G. Dai, G. Sazaki, T. Matsui, K. Tsukamoto, K. Nakajima, Q. Kang, W. Hu, Crystal Growth & Design, 11, 88-92 (2011).
  • Growth mechanism of a hexagonal bipyramidal ice crystal in the presence of winter flounder antifreeze proteins: H. Nada and Y. Furukawa, in Physics and Chemistry of Ice 2010, Ed. Y. Furukawa, G, Sazaki, T. Uchida and N. Watanabe, Hokkdido University Press, 429-436 (2011).
  • S. Sugiyama, M. Hirose, N. Shimizu, M. Niiyama, M. Maruyama, G. Sazaki, R. Murai, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, H. Matsumura, gEffect of evaporation on protein crysals grown in semi-solid agarose hydrogelh, Jpn. J. Appl. Phys., 50, 025502-1-4 (2011).


  • Phase-field simulation for crystallization of a highly supercooled forsterite-chondrule melt droplet:H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, A. Srivastava,Journal of Applied Physics 108, 114912 (2010).
  • Molecular resolution investigation of tetragonal lysozyme(110) face in
    liquid by FM-AFM: K. Nagashima, M. Abe, S. Morita, N. Oyabu, K. Kobayashi, H. Yamada, M. Ohta, R. Kokawa, R. Murai, H. Matsumura, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, J. Vac. Sci. Technol. B 28, C4C11-C4C14 (2010).
  • Significant alterations in anisotropic ice growth rate induced by the ice nucleation-active bacteria Xanthomonas campestris: H. Nada, S. Zepeda, H. Miura, Y. Furukawa, Chem. Phys. Lett., 498,  101-106 (2010).
  • Elementary steps at the surface of ice crystals visualized by advanced optical microscopy:G. Sazaki, S. Zepeda, S. Nakatsubo, E. Yokoyama, Y. Furukawa, , Proc. Nat. Acad. Sci. USA., 107, 19702-19707 (2010). (Selected as In This Issue PNAS)
  • Solubility measurements of protein crystals under high pressure by in situ observation of steps on crystal surfaces:T. Fujiwara, Y. Suzuki, G. Sazaki, K. Tamura, "", J. Phys. Conf. Series, 215, 012159-1-5 (2010).
  • In situ observation of step dynamics on gypsum crystals:A.E.S. Van Driessche, J.M. García-Ruíz, J.M. Delgado-López, G. Sazaki, Crystal Growth & Design, 10, 3909-3916 (2010).
  • Enhancement of femtosecond laser-induced nucleation of protein in a gel solution:R. Murai, H.Y. Yoshikawa, Y. Takahashi, M. Maruyama, S. Sugiyama, G. Sazaki, H. Adachi, K. Takano, H. Matsumura, S. Murakami, T. Inoue, Y. Mori, Appl. Phys. Lett., 96, 043702-1-3 (2010).
  • Nucleation and polymorphism of calcium carbonate by a vapor diffusion sitting drop crystallization technique:J. GoLmez-Morales, AL. HernaLndez-HernaLndez, G. Sazaki, J.M. GarciLa-Ruiz, Crystal Growth & Design, 10, 963-969 (2010).
  • An approach to the crystallization of DNA using the thermal reversible process of DNA duplex:T. Chatake, G. Sazaki, T. Kikkou, S. Fujiwara, T. Ishikawa, O. Matsumoto, Y. Morimoto, Crystal Growth & Design , 10, 1090-1095 (2010).


  • Growth of ice disk: Dependence of critical thickness for ice disk instability on supercooling of water:E. Yokoyama, R.F. Sekerka and Y. Furukawa, Journal of Physical Chemistry,@B113, 4733-4738 (2009).
  • Apparatus for single ice crystal growth from the melt:Salvador Zepeda, Shuinichi Nakatsubo and Yoshinori Furukawa, Rev. Sci. Inst., 80, 115102 (2009).
  • Chiral and achiral mechanisms of regulation of calcite crystallization:M. Maruyama, K. Tsukamoto, G. Sazaki, Y. Nishimura, P.G. Vekilov, Crystal Growth & Design, 9, 127-135 (2009).
  • Influence of micro impurity on protein crystal growth studied by etch figure method: G. Dai, X. Liu, G. Sazaki, X.G. Zhang, J. Crystal Growth, 311, 548-552 (2009).
  • Femtosecond laser-induced nucleation of protein in agarose gel:H.Y. Yoshikawa, R. Murai, S. Sugiyama, G. Sazaki, T. Kitatani, Y. Takahashi, H. Adachi, H. Matsumura, S. Murakami, T. Inoue, K. Takano, Y. Mori, J. Crystal Growth, 311, 956-959 (2009).
  • Preparation and Characterization of ultraclean H: Si (111)-(1x1) surface studied by HREELS, SFM and STM-STS) :H. Kato, T. Taoka, S. Sudo, S. Nishikata, G. Sazaki, K. Nakajima, T. Yamada, R. Czajka, A. Wawro, and A. Kasuya, e-J. Surf. Sci. Nanotech., 7, 557-562 (2009).
  • Direct observation of adsorption sites of protein impurities and their effects on step advancement of protein crystals":A.E.S. Van Driessche, G. Sazaki, G. Dai, F. Otalora, J.A. Gavira, T. Matsui, I. Yoshizaki, K. Tsukamoto, K. Nakajima, Crystal Growth & Design, 9, 3062-3071 (2009).
  • First direct observation of elementary steps on the surfaces of glucose isomerase crystals under high pressure;Y. Suzuki, G. Sazaki, M. Matsumoto, M. Nagasawa, K. Nakajima, K. Tamura, Crystal Growth & Design, 9, 4289-4295 (2009).

’˜‘ (Books)

  • "}à •\–Ê•ªÍƒnƒ“ƒhƒuƒbƒN"
    13.2 ”÷•ªŠ±ÂŒ°”÷‹¾EˆÊ‘Š·Œ°”÷‹¾
    ²ú±Œ³C¬¼Œ[
    “ú–{•\–Ê^‹óŠw‰ïi•ÒWj, ’©‘q‘“X, pp. 220-223 (2021)
  • "—L‹@E–³‹@Þ—¿‚Ì‘Š“]ˆÚƒ_ƒCƒiƒ~ƒNƒX"
    ‘æ‡T•”3Í •XŒ‹»‚Ì‘Š“]ˆÚƒ_ƒCƒiƒ~ƒNƒX‚ðŒ©‚é
    ²ú±Œ³CŒÃì‹`ƒ
    “ú–{‰»Šw‰ïi•ÒWj, ‰»Šw“¯l, pp.58-66 (2020)
  • "Compendium of Surface and Interface Analysis"
    Chapter10 Differential interference contrast microscopy/phase-contrast microscopy
    H. Komatsu, G. Sazaki
    The Surface Science Society of Japan (Ed.), Springer, pp.55-60 (2018)
  • "Compendium of Surface and Interface Analysis"
    Ed: The Surface Science Society of Japan (Springer, Singapore, 2018)
    ISBN 978-981-10-6155-4
    Chapter 10. Differential interference contrast microscopy/phase-contrast microscopy. H. Komatsu, G. Sazaki, pp. 55-60.
  • "Handbook of Crystal Growth"
    (Ed. T. Nishinaga, Elsevier, Amsterdam, 2015)
    ISBN 9780444563699
    Vol. I. 25. Snow and Ice Crystal Growth. Y. Furukawa, pp. 1061-1112.
  • u’ቷŠÂ‹«‚̉ȊwŽ–“Tv
    Ed: 쑺Œö—², ‘哇Œcˆê˜Y, ¬’BP•v, 쑺Œ«“ñ, ²ú±Œ³, ™ŽRT, ŠÖÉ, ‹{ú±—YŽO, ‚‹´WŽü, ¼‰ªƒ, Œ´“oŽu•F, •ŸˆäŠw, “¡‹gNŽu, ŽOŽ›Žj•v, –{ŽRG–¾, “n•”’¼Ž÷ (’©‘q‘“X, “Œ‹ž, 2016)
    ‘æ11-2€@•XIh‚Ì‘Š“]ˆÚ‚ÆŽ©‘RŒ»Û, ²ú±@Œ³. pp. 360.
    ‘æ11-7€@•\–Ê—Z‰ð, ²ú±@Œ³, pp. 368-369.
  • "Special issue: Recent Progress on Fundamentals and Applications of Crystal Growth; Proceedings of the 16th International Summer School on Crystal Growth (ISSCG-16)"
    Ed: G. Sazaki, H. Nada, S. Naritsuka
    Progress in Crystal Growth and Characterization of Materials, 62 (2), 41-416 (2016)
  • ’ቷ‰ÈŠw•Ö——
    Ed: –kŠC“¹‘åŠw’ቷ‰ÈŠwŒ¤‹†Š (ŠÛ‘P, “Œ‹ž, 2015)
    ‘æ2Í@•X‚¨‚æ‚Ñá‚ÌŒ‹»¬’·. ²ú±@Œ³CŒÃì‹`ƒC’·“ˆ@Œ•C‘º“cŒ›ˆê˜Y, pp. 11-49.
  • "Surface and Interface Science"
    Ed: K. Wandelt (WILEY-VCH, 2014)
    Volume 3 Chapter 17 Surface of Ice. Y. Furukawa, G. Sazaki, H. Nada, pp. 305-348.
  • "Phsyics and Chemistry of Ice 2010"
    Ed: Y. Furukawa, G. Sazaki, T. Uchida, N. Watanabe (Hokkaido University Press, 2011)

‘ॉðà (Reviews)

  • In-situ optical microscopy observation of elementary steps on ice crystals grown in vapor and their growth kinetics
    G. Sazaki, M. Inomata, H. Asakawa, E. Yokoyama, S. Nakatsubo, K. Murata, K. Nagashima, Y. Furukawa
    Progress in Crystal Growth and Characterization of Materials 67(4), 100550 (2021)
  • ’Y‰»…‘f‚Í©’Ž‚Ì‘Ì•\‚ð‚ǂ̂悤‚É•¢‚Á‚Ä, ‰½‚ð‚µ‚Ä‚¢‚é‚©
    •Ð‹Ë瘿, ‹àŽq•¶r, ’·“ˆŒ•, ²ú±Œ³
    ’ቷ¶•¨HŠw‰ïŽ 67(1), 23-29 (2021)
  • Ice Crystal Growth Experiments Conducted in the Kibo of International Space Station
    Y. Furukawa, K. Nagashima, E. Yokoyama, S. Nakatsubo, S. Zepeda, I. Yoshizaki, H. Tamura, T. Shimaoka, T. Sone, T. Maki, A. Yamamoto, T. Tomobe, K. Murata, G. Sazaki
    International Journal of Microgravity Science and Application 38(1), 380101 (2021)
  • Crystal-plane-dependent effects of antifreeze glycoprotein impurity for ice growth dynamics
    Y. Furukawa, K. Nagashima, S. Nakatsubo, S. Zepeda, K. Murata, G. Sazaki
    Philosophical Transactions of the Royal Society A 377(2146), 20180393 (2019)
  • The surface of ice under equilibrium and non-equilibrium conditions
    Y. Nagata, T. Hama, E.H.G. Backus, M. Mezger, D. Bonn, M. Bonn, G. Sazaki
    Accounts Chem. Res. 52 (4), 1006-1015 (2019)
  • ‚•ª‰ð”\ŒõŠwŒ°”÷‹¾‚ð‹ìŽg‚µ‚Ä•X‚Ì•\–Ê—Z‰ð‚Ì–{Ž¿‚É”—‚é
    –ƒì–¾r, ²ú±Œ³, ’·“ˆŒ•, ’†’Ørˆê, ŒÃì‹`ƒ
    Journal of the Society of Inorganic Materials, Japan: ƒZƒbƒRƒEEΊDEƒZƒƒ“ƒgE’n‹…ŠÂ‹«‚̉Ȋw 26(399), 99-104 (2019)
  • ©’Ž‚Æ‘Ì•\Ž‰Ž¿\‘¢‚Ö‚ÌÔŠO•ªŒõ–@‚É‚æ‚éƒAƒvƒ[ƒ`F“§Ž¼«‚Æ‚ÌŠÖ‚í‚è
    ‹àŽq•¶r, •Ð‹Ë瘿, ’·“ˆŒ•, ²ú±Œ³
    ©’Ž‚ÆŽ©‘R 54(3), 30-31 (2019)
  • •X‚Ì•\–Ê‚Í‚È‚º”G‚ê‚é‚Ì‚©H
    ‘º“cŒ›ˆê˜YC²ú±@Œ³
    “ú–{•¨—Šw‰ïŽ, 72 (9), 669-674 (2017).
  • ƒ[ƒ“xˆÈ‰º‚̉·“x‚Å‚à”G‚ê‚Ä‚¢‚é•X‚Ì•\–Ê
    ²ú±Œ³
    ‰»Šw‚Æ‹³ˆç, 64 (8), 396-399 (2016).
  • In-situ observation of crystal surfaces by optical miscroscopy
    G. Sazaki, K. Nagashima, K. Murata, Y. Furukawa
    Progress in Crystal Growth and Characterization of Materials, 62 (2), 408-412 (2016).
  • á‚É”é‚ß‚ç‚ꂽ‰»Šw‚É”—‚é
    ŒÃì‹`ƒ
    uŽl‹G‚̉»Šw-“~v, ŒŽŠ§‰»Šw, 70(12), 42-45, (2014,1216)
  • á‚ÌŒ‹»‚ÌŒ`‚Í‚¢‚©‚É‚µ‚Ä‚«‚Ü‚é‚Ì‚¾‚낤‚©
    ŒÃì‹`ƒ
    ŠwŽm‰ï•ñ@No.907, 103-107, 2014-IV.
  • •Xƒx[ƒTƒ‹–Êã‚Å‚ÌŒ`‘Ô‚ªˆÙ‚È‚é2Ží—Þ‚Ì‹[Ž—‰t‘Ì‘w‚̶¬‰ß’ö
    ²èŒ³A–ƒì–¾rA’·“ˆŒ•A’†’ØrˆêAŒÃì‹`ƒ
    Int. J. Microgravity Sci. 31(3), 100-105 (20141000).
  • Crystal Growth Experiments of Ice in Kibo of ISS
    Y. Furukawa, E. Yokoyama, I. Yoshizaki, H. Tamaru, T. Shimaoka, T. Sone
    Int. J. Microgravity Sci. 31(3), 93-99 (20141000).
  • ‘½–Ê‘ÌŒ‹»‚ÌŒ`‘ÔˆÀ’è«‚ÌŠÏ“_‚©‚ç‚Ý‚½•X‰~”ÕŒ‹»‚̬’·•sˆÀ’è
    ‰¡ŽR‰x˜YCŒÃì‹`ƒ
    Int. J. Microgravity Sci. (19-23)(20131000).
  • —n‰t—¬‚ꉺ‚É‚¨‚¯‚éƒ^ƒ“ƒpƒNŽ¿‚ÌŒ‹»¬’·: ŠÛŽR”ü”¿ŽqC’†‘º^—˜ŽqC²ú±@Œ³C‚‹´‹`“TC‹g‘º­ŽuC‹gì—mŽjC™ŽR ¬CˆÀ’BGºC¼‘º_—RCˆäã@‹C‚–ì˜a•¶C‘ºã@‘CX@—E‰îC“ú–{Œ‹»¬’·Šw‰ïŽC40, 72-82, (2013).
  • ƒ^ƒ“ƒpƒNŽ¿Œ‹»•\–Êã‚ł̃^ƒ“ƒpƒNŽ¿•ªŽq‚ÌŠgŽUE‹z’…E’E—£‹““®‚ÌŒõŠw‚»‚ÌêŠÏŽ@: ²ú±@Œ³C‰ª“c‰ëŽjCGuoliang DaiC¼ˆä‘ñ˜YC’Ë–{Ÿ’jC’†“ˆˆê—YC“ú–{Œ‹»¬’·Šw‰ï ŽC40, 83-90 (2013).
  • ˆ³—Í‚ðŽg‚Á‚½ƒ^ƒ“ƒpƒNŽ¿‚ÌŒ‹»¬’·‚ÌŒ¤‹†: —é–Ø—Ç®C²ú±@Œ³C“¡Œ´‹M‹vC’Ë–{‰ë”VC“ú–{Œ‹»¬’·Šw‰ïŽC40, 107-114 (2013).
  • ‚•ª‰ðŒõŠwŒ°”÷‹¾‚Å‚Ý‚é•XŒ‹»‚̬’·‘f‰ß’ö‚Æ•\–Ê—Z‰ð: ²ú±@Œ³CƒTƒ‹ƒoƒh[ƒ‹@ƒ[ƒyƒ_C’†’ØrˆêCŒÃì‹`ƒC“ú–{H•i‰ÈŠwHŠw‰ïŽC60, 445-449 (2013).
  • •s“€“œƒ^ƒ“ƒpƒNŽ¿‚Ì•X/…ŠE–Ê‹z’…‚ÆŒ‹»¬’·§Œä: ŒÃì‹`ƒCSalvador ZepedaC‰F“cKOC’†’J_”VC’†’ØrˆêC’ቷ‰ÈŠwC71, (69-70)(20130331)
  • •XŒ‹»•\–Ê‚Å‚Ì’PˆÊƒXƒeƒbƒv‚Æ‹[Ž—‰t‘Ì‘w‚Ì’¼ÚŒõŠwŠÏŽ@: ²ú±Œ³CƒTƒ‹ƒoƒh[ƒ‹Eƒ[ƒyƒ_C’†’ØrˆêCŒÃì‹`ƒC’ቷ‰ÈŠwC71, (1-13)i20130331j
  • •XŒ‹»‚Ì•\–Ê—Z‰ð‰ß’ö‚ÌŒõŠw‚»‚ÌêŠÏŽ@: ²ú±Œ³CƒTƒ‹ƒoƒh[ƒ‹Eƒ[ƒyƒ_C’†’ØrˆêCŒÃì‹`ƒC‰ž—p•¨—C82, (150-153)(20130200)
  • ŒÅ‘ŠƒnƒCƒhƒƒQƒ‹’†‚ł̃^ƒ“ƒpƒNŽ¿Œ‹»‰»: ™ŽR@–ÎC¼‘º_—RCŠÛŽR”ü”¿ŽqC²ú±@Œ³CœA£–¢‰ÊCˆÀ’BGºC‚–ì˜a•¶C‘ºã@‘Cˆäã@‹CX@—E‰îC“ú–{Œ‹»Šw‰ïŽ, 54, 300-303 (2012).
  • •X‚ÌŒ‹»¬’·‚̉F’ˆŽÀŒ±|Œ‹»Œ`‚̶¬‹@\‚̉𖾂ð–ÚŽw‚µ‚Ä|: ŒÃì‹`ƒ, “ú–{“dŽqÞ—¿‹Zp‹¦‰ï‰ï•ñC43C(2012) 20-24.
  • ISSu‚«‚Ú‚¤v‚É‚¨‚¯‚é•X‚ÌŒ‹»¬’·‚ƃpƒ^[ƒ“Œ`¬ŽÀŒ±: ŒÃì‹`ƒC‰¡ŽR‰x˜YC‹gèòC“‡‰ª‘¾˜YC‘]ª••FC—F•”r”V, “ú–{Œ‹»¬’·Šw‰ïŽC39(2), (2012) 61-67.
  • In situ observation of elementary growth processes of protein crystals by advanced optical microscopy: G. Sazaki, A.E.S. Van Driessche, G. Dai, M. Okada, T. Matsui, F. Otarola, K. Tsukamoto, K. Nakajima, Protein & Peptide Letters, 19, 743-760 (2012).
  • Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition iInvited Review): H. Nada and Y. Furukawa, Polymer Journal, 44, 690-698 (2012) ; doi:10.1038/pj.2012.13
  • ‰F’ˆ‚Åì‚é•X‚ÌŒ‹»FŒÃì‹`ƒC‰»Šw‚Æ‹³ˆçC60-6, (2012)238-241.
  • ƒŒ[ƒU[‹¤Å“_”÷•ªŠ±ÂŒ°”÷‹¾‚ð—p‚¢‚½•XŒ‹»•\–Ê‚Å‚Ì•ªŽqƒXƒeƒbƒv‚Ì‚»‚ÌêŠÏŽ@: ²è@Œ³CƒTƒ‹ƒoƒh[ƒ‹ ƒ[ƒyƒ_C’†’ØrˆêCŒÃì‹`ƒ, ŒõŠwC41, (2012)33-35 .
  • –³d—͉º‚É‚¨‚¯‚é•X‚ÌŒ‹»¬’·ŽÀŒ±:ŒÃì‹`ƒC‹gè@ò,‚È‚ª‚êC30 (2011) 25-30.
  • ICE: in Encyclopedia of Snow, Ice and Glacier. Ed. V.L. Singh, P. Singh, U.K. Haritashya, Springer, 557-560, (20110000).
  • “€Œ‹‚É‹y‚Ú‚·•s“€“œƒ^ƒ“ƒpƒNŽ¿‚̉e‹¿FŒÃì‹`ƒCu©’Ž‚̒ቷ‘Ï«|‚»‚ÌŽd‘g‚Ý‚Æ’²‚וû|v‘æ4•”‘æ2ÍCÏ–Ø‹v–¾C“c’†ˆê—TCŒã“¡”üç‘ã •ÒC‰ªŽR‘åŠwo ”ʼnïC(2010) 116-124.
  • •XŒ‹»¬’·‚ðŽx”z‚·‚éƒ^ƒ“ƒpƒNŽ¿|•X“_‰º‚ɶ‚«‚鶕¨‚Í‚¢‚©‚É‚µ‚Ä“€Œ‹‚ð‰ñ”ð‚·‚é‚©|:ŒÃì‹`ƒASalvador Zepeda, ‰F“cKO,“ú–{•¨—Šw‰ïŽ, 65(2010)98-103.
  • •X‚ÌŒ‹»¬’·‚É‚¨‚¯‚éŒ`‘Ô•sˆÀ’艻|ISSu‚«‚Ú‚¤vŽÀŒ±‚ÌŠT—v:ŒÃì‹`ƒA‰¡ŽR‰x˜YA‹gèòAˆË“cáÁˆêA“c’†“N•vA“‡‰ª‘¾˜YA‘]ª••FA—F •”r”V,“ú–{ƒ}ƒCƒNƒƒOƒ‰ƒrƒeƒB‰ž—pŠw‰ïŽA27 (2010j24-31.
  • •X‚Ì•\–Ê‚Í—Z‚¯‚Ä‚¢‚éI-ŠŠ‚è‚â‚·‚³‚̃ƒJƒjƒYƒ€|:ŒÃì‹`ƒ,“ú–{ ‹@ŠBŠw‰ïŽ,112-5 (2009) 54-57.
  • ‰F’ˆŽÀŒ±‚ª‚‚¢‚ÉŽ„‚½‚¿‚ÌŽè‚ÉI|u‚«‚Ú‚¤v‚Å‚Ì•XŒ‹»¬’·ŽÀŒ±:ŒÃì‹`ƒ,‰»Šw(‰»Šw“¯l)A64-8(2009)38-42
  • á‚ÌŒ‹»:ŒÃì‹`ƒ,á•XŒ¤‹†‚ÌŒn•ˆ(“ú–{á•XŠw‰ï–kŠC“¹Žx•”), (2009)49-51.
  • •s“€“œƒ^ƒ“ƒpƒNŽ¿‚Ì•X/…—n‰tŠE–Ê‹z’…‚Æ•XŒ‹»¬’·:ŒÃì‹`ƒ,—â“€(“ú–{‹ó’²—â“€Šw‰ïŽ), 84(2009)929-934.
  • “ä‚É–ž‚¿‚½á‚ÌŒ‹»(ƒPƒlƒXEƒŠƒuƒŒƒqƒg’˜):(–|–ó)ŒÃì‹`ƒ,ƒpƒŠƒeƒB(ŠÛ‘Po”Å),24-12(2009) 4-12.
  • Crystal quality enhancement by magnetic fields:G. Sazaki, Prog. Biophys. Mol. Biol., 101, 45-55 (2009).

ŽóÜ