Comparing Cloud Properties from Chemical Compositions of Cores

K. Hosaka¹, K. Sorai¹, and A. Habe¹

¹Department of Cosmoscinences, Hokkaido University, Japan

The chemical characteristics within dense cloud cores can reveal their evolution stage. Because they have different production chemistries, the column densities of NH_3 , CCS can reveal the chemical characteristics in dense cores. So, $N(CCS)/N(NH_3)$ is a good indicator of chemical evolution [1].

We observed CCS $J_N=2_1-1_0$, NH₃ (J, K) = (1, 1), (2, 2) lines toward molecular cores in the Taurus Cloud Complex with the Hokkaido University Tomakomai 11 m Telescope.

Assuming LTE and $T_k=10$ K, we estimated column densities from our results. Figure 1 is a distribution of column densities of CCS and NH₃. Comparing this result with results of other clouds (e.g. the Perseus Cloud Complex [2], the Pipe Nebula [3]), we can compare properties of these clouds from chemical compositions of cores. For example, from low column density of NH₃ in cores, the Pipe Nebula seems to be younger than the Taurus Cloud Complex.

Additionally, we found that $N(CCS)/N(NH_3(1, 1))$ of our samples are lower in higher $n(H_2)$ from $H^{13}CO^+$ J=1-0 line observation [4]. So, we can say chemical evolution of cores is consistent with physical evolution of cores.

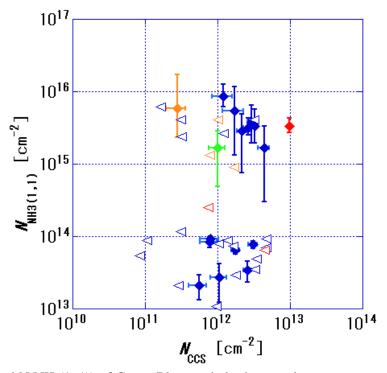


Figure 1: N(CCS) and N(NH₃(1, 1)) of Cores. Blue symbols show starless cores, orange and red symbols show cores with stars, a green symbol shows an accreting core. Open triangles show upper limit of N(CCS).

References

[1] H. Suzuki, S. Yamamoto, M. Ohishi, N. Kaifu, S. Ishikawa, Y. Hirahara & S. Takano, 1992, ApJ, 392, 551.

[2] E. W. Rosolowsky, J. E. Pineda, J. B. Foster, M. A. Borkin, J. Kauffmann, P. Caselli, P. C. Myers & A. A. Goodman, 2008, ApJS, 175, 509

[3] J. M. Rathborne, C. J. Lada, A. A. Muench, J. F. Alves & M. Lombardi, 2008, ApJS, 174, 396.

[4] T. Ohnishi, A. Mizuno, A. Kawamura, K. Tachihara & Y. Fukui, 2002, ApJ, 575, 950.