Chemical pathways of Methyl Mercaptan (CH₃SH) with Hydrogen atoms on Interstellar Ice

<u>T. Nguyen</u>,¹ Y. Oba,¹, W.M.C Sameera^{1,2}, A. Kouchi, and N. Watanabe¹ ¹Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Japan ²University of Colombo, Colombo, Sri Lanka

There have been about 30 sulfur (S)-bearing species identified in the interstellar medium (ISM). Since the observed abundance of S-bearing species in the gas phase is lower than the cosmic abundance of S^1 , it is often considered that there might be a source of "missing S" on interstellar grains. Based on an assumption that physico-chemical processes of S-bearing species on interstellar grains would be a key to constrain their presence in the ISM, several laboratory studies have been performed and our understanding has been significantly improved on the surface processes of S-bearing species at low temperatures^{2,3}. In the present study, we shed light on the behavior of other S-bearing species, methyl-mercaptan (CH₃SH), via chemical reactions of CH₃SH and H atoms without external energies on interstellar ices at low temperatures (typically 10 K) using experimental and computational methods.

We found that chemical reactions of CH₃SH with H atoms proceeded via multiple channels: CH₃SH + H \rightarrow CH₃ + H₂S, CH₃S + H₂, or CH₂SH + H₂. The major channel was the dissociation of C-S bond in CH₃SH with the activation barrier of 0.05 eV on amorphous solid water, eventually resulting in the formation of methane (CH₄) by further hydrogenation to CH₃⁴. The hydrogen abstraction channels lead to the formation of CH₃S and CH₂SH radicals, and further hydrogenation to these radicals would result in the formation of CH₃SH again. Chemical desorption of CH₃SH was not positively identified via these processes, implying the presence of other processes for the desorption of CH₃SH from interstellar grains at low temperatures.

References

- [1]. V. Wakelam, A. Castets, C. Ceccarelli, et al. A&A, 2004, 413, 60
- [2]. A. Jiménez-Escobar, & G. M. Muñoz Caro, A&A, 2011, 536, A91
- [3]. Y. Oba, T. Tomaru, T. Lamberts, A. Kouchi, N. Watanabe, Nat. Astron. 2018, 2, 228-232
- [4]. T. Nguyen, Y. Oba, W. M. C. Sameera, K. Furuya, A. Kouchi, N. Watanabe, ApJ, 2023, 944(2), 219.