Mapping observations of deuterated species toward the low-mass protostar L1527 with ALMA

K. Yoshida,^{1,2} N. Sakai,² and S. Yamamoto¹

¹Department of physics, The University of Tokyo, Japan ²Star and Planet Formation Laboratory, RIKEN Cluster for Pioneering Research (CPR), Japan

We observed formaldehyde (H₂CO) and its deuterated species (HDCO and D₂CO) toward the Class 0 low-mass protostar L1527 with ALMA. The distributions of H₂CO and the deuterated isotopologues are found to be clearly different from each other. The emission of H₂CO is strong around the protostar (r < 250 au), as previously reported [1]. On the other hand, the deuterated species mainly reside in the outer envelope ($r \sim 1000$ au). It has been thought that H₂CO is efficiently produced on dust grains and released into the gas phase in the warm region near the protostar. This process is indeed the case for H₂CO, because its distribution is concentrated in the vicinity of the protostar, where the temperature is higher than the desorption temperature of ~ 40 K [2]. On the other hand, the deuterated species are likely produced in the gas phase and/or released from dust grains via non-thermal processes, because the kinetic temperature derived from the different *K* transitions of D₂CO is as low as 20 K.

The D/H ratio in the outer envelope is derived to be high (HDCO/H₂CO ~ 0.8). The high D/H ratio in the outer envelope is confirmed also for the CCD/CCH case, based on our recent ALMA observations. On the other hand, the D/H ratios are found to be low in the vicinity of the protostar (~ a few percent). Hence, the decrease in the deuterium fractionation is confirmed along the protostellar envelope within a 1000 au scale.

Figure 1: The integrated intensity maps of the H_2CO (5₁₅-4₁₄), D₂CO (4₀₄-3₀₃ and 4₂₃-3₂₂), and HDCO (4₁₃-3₁₂) lines obtained with the ALMA ACA array.

References

- [1] N. Sakai et al., 2014, ApJL, 791, 38
- [2] J. J. Tobin et al., 2013, ApJ 771, 48