Photo-desorption of circumstellar nitrogen-bearing ice analogs

<u>A. Ciaravella</u>,¹ Y.-J. Chen,² C. Cecchi-Pestellini,¹ C.-H. Huang,² A. Jim_enez-Escobar,² G.M. Munoz Caro,³ and N.-E. Sie²

¹INAF - Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo, Italy ²Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan ³Centro de Astrobiolog_a (INTA-CSIC), Carretera de Ajalvir, km 4, Torrej_on de Ardoz, 28850 Madrid, Spain

We study the photo-desorption occurring in H₂O:CO:NH₃ ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250-1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (NSRRC, Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C₃H₃NO, C₄H₅O, C₄H₇N), supporting the enrichment of the gas phase.

At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield.

We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photons⁻¹ in the range 10^{15} - 10^{20} absorbed photons cm⁻². We apply these findings to a protoplanetary disk model irradiated by a central T Tauri star.