A line survey of the massive star-forming region Sgr B2(M) in the 3 and 7 mm regions

Ayane Miyazaki,1 Takahiro Oyama,1 Rin Abe,1 Mitsunori Araki,1 Shuro Takano,2 Nobuhiko Kuze,3 Yoshihiro Sumiyoshi,4 Koichi Tsukiyama,1 and Yasuki Endo5

1 Department of Chemistry, Tokyo University of Science, Japan
2 Department of Physics, College of Engineering, Nihon University, Japan
3 Department of Materials and Life Sciences, Sophia University, Japan
4 Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Japan
5 Department of Applied Chemistry, National Chiao Tung University, Taiwan

Line survey is an intensive investigation of chemical composition of a molecular cloud. The galactic center region is still primitive for detail chemical composition. In the present study, we carried out line survey of the massive star-forming region Sgr B2(M) in the 3 and 7 mm regions with Nobeyama 45 m radio telescope. Especially the 7 mm region was firstly surveyed in this cloud. Fig. 1 shows the observed peaks in the 3 and 7 mm regions. The $J = 7_{16} - 6_{15}$ and $7_{25} - 6_{24}$ transitions of HCOOCH$_3$ were observed for the first time in Sgr B2(M). The column density was determined to be 9.3×10^{13} cm$^{-2}$, where the rotational temperature was fixed at 23 K reported by Cummins et al [1]. The lines of the $J = 6 - 5$ transition for CH$_3$CCH were also observed. The column density and the rotational temperature were determined to be 1.1×10^{16} cm$^{-2}$ and 38 K, respectively. In addition, the lines of CH$_3^{13}$CCH were observed for the first time as an interstellar molecule. In the 7 mm region, the absorption lines of the $J = 1 - 0$ transition were observed for 28SiO and 29SiO. Although both the components of the envelop of Sgr B2(M) and the clouds in front of it were found for 28SiO, the former was only detected for 29SiO. This difference is thought to be due to a higher 29Si/28Si ratio in Sgr B2(M).

Fig. 1: The observed peaks in the 3 mm and 7 mm regions with Nobeyama radio telescope. Upper panel: 87.5–91.5 GHz. Middle panel: 99.6–103.6 GHz. Lower panel: 42.5–45.5 GHz.