Diffuse Interstellar Bands (DIBs) still haven’t been identified, although several hundreds of bands have been detected [1]. To identify DIBs, we observed the laboratory absorption spectra of the $2^2A_2 - \tilde{X}^2B_1$ electronic transition of the phenoxy radical C_6H_5O by cavity ring down spectroscopy. The radical was produced by pulsed discharge with a hollow cathode (inside diameter: 2 cm) using a gas mixture of anisole $C_6H_5OCH_3$ (0.1 Torr) and helium (0.4 Torr) in a cell. The optical cavity in the cell was formed with two high-reflectivity mirrors ($R > 99.99\%$). Laser pulses transmitting the cavity were detected with a photomultiplier tube and ring down curves were acquired with an oscilloscope. The three absorption bands having the large intervals about 500 cm$^{-1}$ were measured in the 5700–6200 Å region and were assigned to the $2^2A_2 - \tilde{X}^2B_1$ electronic transition as shown in Figure 1 because the origin band of the electronic transition was reported at around 6200 Å in matrix [2] and the measured three bands were assigned to the 1-0, 2-0, and 3-0 bands of the ν_{11} mode by comparing with the frequencies obtained by a quantum chemical calculation (B3LYP/cc-pVTZ). The three bands include the two shoulder peaks at the lower-wavenumber side as shown in Figure 2. The shoulder peaks can not be assigned to the hot bands of the ν_{11} mode due to the large intervals from the main band ($\nu_{11} = 2$-0). The relative intensity of the shoulder peaks were tested in a dry-ice temperature. Decreasing of the relative intensity suggested that the peaks are attributed to the hot bands of the lowest vibrational mode (ν_{20}).

References