High Resolution Spectroscopy of the ${}^{2}A_{2} - \widetilde{X}^{2}B_{1}$ Electronic Transition of Phenoxy Radical as a Candidate of Diffuse Interstellar Bands Carrier

Y. MATSUSHITA, M. ARAKI, K. NIWAYAMA and K. TSUKIYAMA

Faculty of Science Division I, Tokyo University of Science, Japan

Diffuse Interstellar Bands (DIBs) still haven't been identified, although several hundreds of bands have been detected [1]. To identify DIBs, we observed the laboratory absorption spectra of the ${}^{2}A_{2} - \widetilde{X} {}^{2}B_{1}$ electronic transition of the phenoxy radical C₆H₅O by cavity ring down spectroscopy. The radical was produced by pulsed discharge with a hollow cathode (inside diameter: 2 cm) using a gas mixture of anisole C₆H₅OCH₃ (0.1 Torr) and herium (0.4 Torr) in a cell. The optical cavity in the cell was formed with two high-reflectivity mirrors (R >99.99 %). Laser pulses transmiting the cavity were detected with a photomultiplier tube and ring down curves were acquired with an oscilloscope. The three absorption bands having the large intervals about 500 cm⁻¹ were measured in the 5700-6200 Å region and were assigned to the ${}^{2}A_{2} - \widetilde{X}^{2}B_{1}$ electronic transition as shown in Figure 1 because the origin band of the electronic transition was reported at around 6200 Å in matrix [2] and the measured three bands were assigned to the 1-0, 2-0, and 3-0 bands of the v₁₁ mode by comparing with the frequencies obtained by a quantum chemical calculation (B3LYP/cc-pVTZ). The three bands include the two shoulder peaks at the lower-wavenumber side as shown in Figure 2. The shoulder peaks can not be assigned to the hot bands of the v_{11} mode due to the large intervals from the main band ($v_{11} = 2-0$). The relative intensity of the shoulder peaks were tested in a dry-ice temperature. Decreasing of the relative intensity suggested that the peaks are attributed to the hot bands of the lowest vibrational mode (v_{20}).

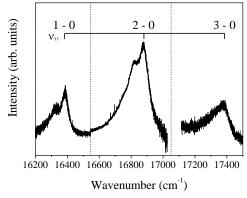


Figure 1: Absorption spectra of the phenoxy radical

- [1] Heger M. L., Lick Obs. Bull. 10, 141 (1922)
- [2] Radziszewski et al., J. Chem. Phys. 115, 9733 (2001)

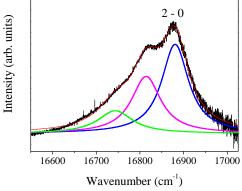


Figure 2: The 2-0 band and the shoulder peaks of the ${}^{2}A_{2} - \widetilde{X} {}^{2}B_{1}$ electronic transition of the phenoxy radical